

Anpassungen in den Trockengebieten im Osten Deutschlands

Online, 18. Mai 2021
Dr. Hubert Heilmann
Institut für Pflanzenproduktion und Betriebswirtschaft

Gliederung

1. Folgen des Klimawandels

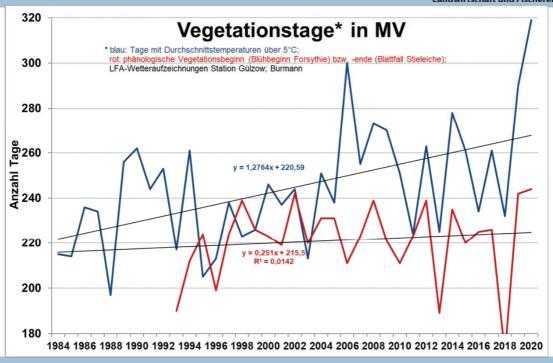
 Verlängerung der Vegetationsperiode, Grundwasserneubildung, Zunahme der Wetterextreme

2. Anpassungsmaßnahmen

- resilientere Sorten
- Bodenbearbeitung, Düngung, Bestellung
- (neue) Fruchtarten, Anbaualternativen
- (- Pflanzenschutz)
- Anpassung der Fruchtfolgen, Diversifizierung

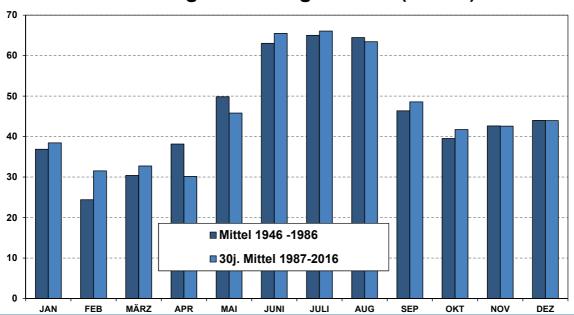
Fragen und Diskussion

Folgen des Klimawandels


Klimawandel

Extreme nehmen zu = Produktionsrisiko steigt

Folgen des Klimawandels



Heilmann; 18.05.2021 Institut für Pflanzenproduktion und Betriebswirtschaft/LFA MV

Folgen des Klimawandels

Niederschlagsverteilung Gülzow (in mm)

zunehmende Frühsommertrockenheit Juni - Juli - August = regenreichste Monate!

Folgen des Klimawandels

Vegetationstage: nehmen messbar zu

Folgen: Entwicklungsverläufe der Kulturen ändern sich Überwachsen = Auswinterungsgefahr steigt

Milde Winter schonen Schädlingspopulationen, fehlende Induktion

des Schossens, Abfrieren der Zwischenfrüchte neue Terminierung von Arbeitsabläufen/-prozessen

Frühsommertrockenheit: Zunahme an Häufigkeit und Heftigkeit (2018, 2019)

Folgen: Auflaufprobleme bei Sommerungen nehmen zu

negative Auswirkungen auf Ertragsbildungsphase von Winterungen

Nährstoff-Verfügbarkeit, Wirkung Bodenherbizide, ...

Sandstürme, Winderosion

Grundwasserneubildung: eher rückläufig

Folgen: wachsender Interessenskonflikt zwischen Landwirtschaft,

Bevölkerung, Industrie

Feldberegnung keine allgemein gültige Lösung

gesellschaftliche Anforderungen: wachsen

Folgen: unabsehbar

Heilmann; 18.05.2021 Institut für Pflanzenproduktion und Betriebswirtschaft/LFA MV

Folgen des Klimawandels

Klimawandel

Nicht der Wandel an sich ist das Hauptproblem, sondern seine Geschwindigkeit!

Vegetationszeit	Ø	(+)
Wetterextreme	Ø	-
Temperatur	Ø	(+)
Niederschlags-	\triangle	(-)
verteilung		
Wasserbilanz	\triangle	(-)

Auf den Sandböden in östlichen und südlichen Regionen mit AZ < 30 sind Ertragseinbußen bis zu 30% bei gleichzeitig sinkender Ertragsstabilität möglich.

Quelle: Studie aufgrund des Landtagsbeschlusses vom 29.03.2007 "Klimaschutz und Folgen des Klimawandels in MV"

Anpassungsmaßnahmen

Regionalspezifische Sortenprüfung

Heilmann; 18.05.2021

Sortenempfehlung Silomais 2020

Institut für Pflanzenproduktion und Betriebswirtschaft/LFA MV

Anbaugebiet D-Nord / MV-Süd

nach dreijähriger Prüfung im Landessortenversuch, sortiert nach Reife

Stand 20.11.19

	Silo-	früh: z.B. vor Wintergetreide		Energieertrag & Qualität Betonung liegt auf *:			Auch	Hinweise zur
	Reife- zahl	oder als Zweitfrucht	Stärke	\leftrightarrow	verdaulichem Strukturfutter	Körner- mais	Biogas	Sorte
KWS Stabil	200	XX	Х			Х		
	200	X	X					
	210	XX		X	X			auch bessere St.
	210	XX		X	X			
	210	X		XX	(X			auch schwäch. St
	210	X		•				auch schwäch. St
	220	X	Х			X		
								

Anbau verschiedener Reifegruppen oder unterschiedlicher Wurzel-/Wuchstypen zur Risikostreuung und Arbeitsspitzen-Entzerrung

Regionalspezifische Sortenprüfung

Sorte	Sile			QUALITÄT: G- Gehalt / V- Verdaulichkeit / K- Konzentration / A- Ausbeute E - ERTRAG (Reifegruppen übergreifend)					usbeute	Stand- festig-	gel-	Blatt- fleck	tole-				
(fett = Empfehlung LFA)		reife - ahl	K- Zahl	Trocken- masse Stärke		D (D0		Energie Ges.pflanze				Biogas (Rath 2016)		keit	fäule- resis- tenz	resis- tenz	ranz
				E	G	E	V	E	K	E	A E]				
100 % =		D-Nord		186	31.2	58.0	71,9	92,0	6,60	122,8	l/kg	cbm/					
	offi-	reali-		dt/ha	%	dt/ha	%	dt/ha	M J/kgTM	GJ/ha	оТМ	ha					
	zell	siert				l .		relativ									
						im	3. LSV-	Prüfjah	r								
Keops	210	208		98	102	100	100	98	100	99	105	103	+		+	+	
Amanova	210	195	230	98	102	100	101	97	101	98	105	102	0	+	+	+	
Farmezzo	210	223	220	96	104	100	103	98	103	99	101	98	О	+	+		
LG 31211	210	214	210	95	103	98	101	94	101	96	105	99	++	+	0/+	+	
ES Amazing	210	215		92	95	88	100	94	100	92	105	97	+		+	+	
SY Talisman	220	221	230	97	105	101	100	95	100	97	100	97	+	0	+	+	
Susetta	220	223	240	98	97	94	102	101	102	99	103	100	0	+	0/+	0	
~		***************************************											***************************************				

Beachtung relevanter Sorteneigenschaften, Resistenzen etc. Nutzung des züchterischen Fortschritts und neuer, besser an die veränderten Bedingungen adaptierte Sorten

Heilmann, 18.05.2021 Institut für Pflanzenproduktion und Betriebswirtschaft/LFA MV

Bodenbearbeitung, Düngung, Bestellung

Förderung der Bodenfruchtbarkeit und Mehrung der Humusbildung

Reduzierung der Bearbeitungsintensität und Überfahrten

Befahrbarkeit, Vermeidung von Schadverdichtungen (funktionsfähige Drainagen)

<u>S</u>trip Till

Erosionsschutz durch organische Substanz auf Bodenoberfläche (Mulch)

Emissionsarme Düngungstechnik ...

Heilmann; 18.05.2021 Institut für Pflanzenproduktion und Betriebswirtschaft/LFA MV

Bodenfruchtbarkeit mehren = Risiken senken

Leitfaden zur Humusversorgung

Informationen für Praxis, Beratung und Schulung

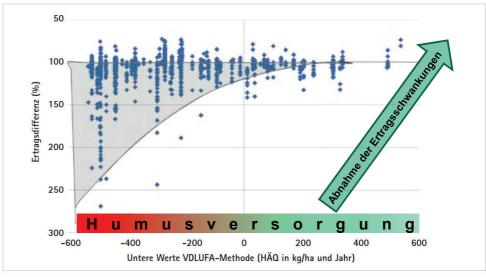


Abbildung 18: Einfluss der Versorgungshöhe mit organischer Substanz (Humusbilanz in HÄQ) auf die Ertragssicherheit der Fruchtarten nach zusätzlichen Bewirtschaftungsmaßnahmen (Fruchtfolge, organische Düngung) (Quelle: Über 1.000 Ertragsvergleiche ermittelt aus Dauerversuchen nach Kolbe, 2012; abnehmender Ertragszuwachs der Fruchtarten durch spiegelbildliche Ertragsdifferenzen dargestellt, 100 % = Ertragsmaximum)

Im Verbund der Landesanstalten

Je besser die Bodenfruchtbarkeit, desto höher das Abfederungsvermögen (Resilienz) gegen äußere Störungen!

Bodenfruchtbarkeit mehren = Ertrag steigern

Auswirkungen einer Erhöhung des Versorgungsgrades mit organischer Substanz vom Niveau der Unterversorgung (=100%) auf guten – sehr guten Versorgungszustand (um +500 kg HÄQ/ha)

physikalische Eigenschaften

Lagerungsdichte

-2 bis -13

+13 bis+15

Veränderung (in %)

 Porenvolumen
 +1 bis +3,5

 Aggregatstabilität
 +8 bis +34

 Anteil Makroporen
 +8 bis +11

 Infiltrationsrate (Wasser)
 +27 bis +80

 Wasserkapazität
 +3 bis +4

 nutzbare Feldkapazität
 S
 +24 bis +28

chemische Eigenschaften

 C_{org} - und N_t -Gehalte +30 potenzielle N-Mineralisierung +26 bis +33

Leitfaden zur Humusversorgung

Informationen für Praxis, Beratung und Schulung

Durch die erhöhte Zufuhr an umsetzbarer organischer Substanz erfolgt eine verstärkte Mineralisation und Freisetzung von Nährstoffen, wovon besonders die Fruchtbarkeit und Ertragsfähigkeit der leichten Böden profitieren.

Im Verbund der Landesanstalten und Landesämter für Landwirtschaft
 Regenwurmdichte
 +38 bis +40

 Fruchtartenertrag
 MW
 +10 (kon) bis +33 (öko)

 Max
 +123 (kon) bis +127 (öko)

Heilmann; 18.05.2021

Institut fü

S = Sand; L = Lehm; kon = konventioneller Landbau; öko = ökologischer Landbau; MW = Mittelwert; Max = maximale Werte

Anpassungsmaßnahmen

Mecklenburg Vorpommern

Landesforschungsanstalt für Landwirtschaft und Fischerei

Als anbauwürdig könnten sich wärmeliebende Arten mit hoher Wassernutzungseffizienz wie Soja, Hirse, Sonnenblumen, Körnermais und Hartweizen erweisen.

Sinken könnte der Ertrag bei Kartoffeln, Lupine und Mähdruschfrüchten.

Quelle: Studie aufgrund des Landtagsbeschlusses vom 29.03.2007 "Klimaschutz und Folgen des Klimawandels in MV"

Anpassungsmaßnahmen

Heilmann; 18.05.2021 Institut für Pflanzenproduktion und Betriebswirtschaft/LFA MV

Fruchtfolgen

Optimale Standortverteilung und Anbaustrukturen (% der AF) bei unterschiedlichen Standorten und Betriebsstrukturen (MICHEL, 1995)

St	andort	Anteil	Getr.*	Raps	Kart., ZR	Silo- mais	Acker- futter	Brache
Jort	AZ 30	100%					•	•
1-Standort	AZ 40	100%	Die	ontima	le Anb	austru	ktur ist	าแล
1-5	AZ 50	100%		•	von de			
dort	AZ 30	33%						
2-Standort	AZ 40	67%		una ae	r "Einh		Keit de	5
2-5	Betrieb	100%			Stand	ortes		
ť	AZ 30	33%	_		_	•		
l go	AZ 40	33%	ein- c		ehrere	_	•	en mit
3-Standort	AZ 50	33%		"eige	nen" F	ruchtfo	olgen!	
(4)	Betrieb	100%						

* auf ertragsschwachem Standort (AZ 30) Winterroggen, sonst Winterweizen und -gerste; AZ 30 = Ackerzahlen 25 - 34, AZ 40 = Ackerzahlen 35 - 45, AZ 50 = Ackerzahlen ab 46; mit festen Produktionsmengenvorgaben für Kartoffeln, Zuckerrüben, Silomais und Ackerfutter.

Heilmann; 18.05.2021 Institut für Pflanzenproduktion und Betriebswirtschaft/LFA MV

Fruchtfolgen

Optimale Standortverteilung und Anbaustrukturen (% der AF) bei unterschiedlichen Standorten und Betriebsstrukturen (MICHEL, 1995)

St	andort	Anteil	Getr.*	Raps	Kart., ZR	Silo- mais	Acker- futter	Brache
dort	AZ 30	100%	57,0	26,0	4,7	6,7	3,6	2,0
1-Standort	AZ 40	100%	59,0	26,0	4,7	6,7	3,6	0,0
1-5	AZ 50	100%	60,0	25,0	4,7	6,7	3,6	0,0
ort	AZ 30	33%						
2-Standort	AZ 40	67%						
2-5	Betrieb	100%						
Ŧ.	AZ 30	33%						
ndo Du	AZ 40	33%						
3-Standort	AZ 50	33%						
8	Betrieb	100%				,		

^{*} auf ertragsschwachem Standort (AZ 30) Winterroggen, sonst Winterweizen und -gerste; AZ 30 = Ackerzahlen 25 - 34, AZ 40 = Ackerzahlen 35 - 45, AZ 50 = Ackerzahlen ab 46; mit festen Produktionsmengenvorgaben für Kartoffeln, Zuckerrüben, Silomais und Ackerfutter.

Heilmann; 18.05.2021 Institut für Pflanzenproduktion und Betriebswirtschaft/LFA MV

Fruchtfolgen

optimale Anbaustrukturen

Optimale Standortverteilung und Anbaustrukturen (% der AF)
bei unterschiedlichen Standorten und Betriebsstrukturen (MICHEL, 1995)

St	andort	Anteil	Getr.*	Raps	Kart., ZR	Silo- mais	Acker- futter	Brache
dort	AZ 30	100%	57,0	26,0	4,7	6,7	3,6	2,0
1-Standort	AZ 40	100%	59,0	26,0	4,7	6,7	3,6	0,0
1-5	AZ 50	100%	60,0	25,0	4,7	6,7	3,6	0,0
Jort	AZ 30	33%	53,8	22,0	3,6	20,6	0,0	0,0
2-Standort	AZ 40	67%	61,0	29,0	5,1	0,0	4,9	0,0
2-5	Betrieb	100%	58,6	26,7	4,6	6,8	3,2	0,0
t	AZ 30	33%						
pu	AZ 40	33%						
3-Standort	AZ 50	33%						
Ġ	Betrieb	100%			,		,	

^{*} auf ertragsschwachem Standort (AZ 30) Winterroggen, sonst Winterweizen und -gerste; AZ 30 = Ackerzahlen 25 - 34, AZ 40 = Ackerzahlen 35 - 45, AZ 50 = Ackerzahlen ab 46; mit festen Produktionsmengenvorgaben für Kartoffeln, Zuckerrüben, Silomais und Ackerfutter.

Fruchtfolgen

Optimale Standortverteilung und Anbaustrukturen (% der AF) bei unterschiedlichen Standorten und Betriebsstrukturen (MICHEL, 1995)

_							-	
St	andort	Anteil	Getr.*	Raps	Kart., ZR	Silo- mais	Acker- futter	Brache
dort	AZ 30	100%	57,0	26,0	4,7	6,7	3,6	2,0
1-Standort	AZ 40	100%	59,0	26,0	4,7	6,7	3,6	0,0
1-5	AZ 50	100%	60,0	25,0	4,7	6,7	3,6	0,0
dort	AZ 30	33%	53,8	22,0	3,6	20,6	0,0	0,0
2-Standort	AZ 40	67%	61,0	29,0	5,1	0,0	4,9	0,0
2-8	Betrieb	100%	58,6	26,7	4,6	6,8	3,2	0,0
Ŧ.	AZ 30	33%	52,9	21,0	5,1	21,0	0,0	0,0
opu	AZ 40	33%	57,1	24,0	9,3	0,0	9,6	0,0
3-Standort	AZ 50	33%	66,0	33,0	0,0	0,0	1,0	0,0
(c)	Betrieb	100%	58,7	26,0	4,8	7,0	3,5	0,0

Effizientere Kulturen (Mais) "wandern" auf leichte Standorte ⇔ Raps und Weizen auf ertragsstärkeren Standorten/Schlaggruppen

Fazit

Bodenfruchtbarkeit verbessern durch Humusmehrung:

reduzierte Bodenbearbeitung, Mulchsaat, Strip Till, ... Zwischenfruchtanbau

erweiterte Fruchtfolgen

Agrarpolitische Restriktionen (Insektenschutz & Agrarpaket, DüV ...):

Raps ohne Insektizide verliert Anbauwürdigkeit

in MV 150 – 250 Tha (beste Vorfrucht für Qualitätsweizen)

"weite Reihen"-Kulturen mech./chem. Unkrautregulierung gewinnen

(neue) Kulturen und **Anbaualternativen** suchen/nutzen:

in MV derzeit nicht im ausreichenden Umfang verfügbar Körnermais, Sonnenblumen perspektivisch für Ackerbaubetriebe Luzerne und Mais für Futterbau/Milchproduktion

Züchtungsfortschritt vs. Gentechnik-Aversion: ???

Der Agrarsektor muss alle Instrumente und Möglichkeiten nutzen, um der Vielzahl von Herausforderungen gerecht werden zu können!

Mais ist:

sehr N-effizient -> senkt den betrieblichen N-Saldo sehr wassereffizient -> leichte Standorte

extensiv -> geringer PS-Index

lockert "winterungenlastige" Fruchtfolgen auf -> Arbeitsspitzenverlagerung,

Problemunkrautbekämpfung und

Möglichkeit des Zwischenfruchtanbaus (Greening)

Anbauwürdigkeit von Körnermais wandert -> NO

Ich danke für **Ihre Aufmerk**samkeit und freue mich auf die **Diskussion!**

Kontakt: Dr. H. Heilmann 03843-789200 h.heilmann@lfa.mvnet.de

